Lecture 04: Probability Basics

▲御▶ ▲ 国≯

- Sample Space: Ω is a set of outcomes (it can either be finite or infinite)
- $\bullet\,$ Random Variable: $\mathbb X$ is a random variable that assigns probabilities to outcomes

Example: Let $\Omega = \{\text{Heads}, \text{Tails}\}$. Let \mathbb{X} be a random variable that outputs Heads with probability 1/3 and outputs Tails with probability 2/3

• The probability that $\mathbb X$ assigns to the outcome x is represented by

$$\mathbb{P}\left[\mathbb{X}=x\right]$$

Example: In the ongoing example $\mathbb{P}\left[\mathbb{X} = \text{Heads}\right] = 1/3$.

- Let $f: \Omega \to \Omega'$ be a function
- $\bullet\,$ Let $\mathbb X$ be a random variable over the sample space $\mathbb X$
- We define a new random variable f(X) is over Ω' as follows

$$\mathbb{P}\left[f(\mathbb{X})=y\right] = \sum_{x \in \Omega: \ f(x)=y} \mathbb{P}\left[\mathbb{X}=x\right]$$

- Suppose $(\mathbb{X}_1, \mathbb{X}_2)$ is a random variable over $\Omega_1 \times \Omega_2$.
 - Intuitively, the random variable (X₁, X₂) takes values of the form (x₁, x₂), where the first coordinate lies in Ω₁, and the second coordinate likes in Ω₂

For example, let (X_1, X_2) represent the temperatures of West Lafayette and Lafayette. Their sample space is $\mathbb{Z} \times \mathbb{Z}$. Note that these two outcomes can be correlated with each other.

Joint Distribution and Marginal Distributions II

- Let $P_1: \Omega_1 \times \Omega_2 \to \Omega_1$ be the function $P_1(x_1, x_2) = x_1$ (the projection operator)
- So, the random variable P₁(X₁, X₂) is a probability distribution over the sample space Ω₁
- $\bullet\,$ This is represented simply as $\mathbb{X}_1,$ the marginal distribution of the first coordinate
- Similarly, we can define \mathbb{X}_2

・ 同 ト ・ ヨ ト ・ ヨ ト

Conditional Distribution

- Let $(\mathbb{X}_1,\mathbb{X}_2)$ be a joint distribution over the sample space $\Omega_1\times\Omega_2$
- We can define the distribution $(\mathbb{X}_1 \mid \mathbb{X}_2 = x_2)$ as follows
 - $\bullet\,$ This random variable is a distribution over the sample space Ω_1
 - The probability distribution is defined as follows

$$\mathbb{P}\left[\mathbb{X}_1 = x_1 \mid \mathbb{X}_2 = x_2\right] = \frac{\mathbb{P}\left[\mathbb{X}_1 = x_1, \mathbb{X}_2 = x_2\right]}{\sum_{x \in \Omega_1} \mathbb{P}\left[\mathbb{X}_1 = x, \mathbb{X}_2 = x_2\right]}$$

For example, conditioned on the temperature at Lafayette being 0, what is the conditional probability distribution of the temperature in West Lafayette?

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Bayes' Rule)

Let $(\mathbb{X}_1, \mathbb{X}_2)$ be a joint distribution over the sample space (Ω_1, Ω_2) . Let $x_1 \in \Omega_1$ and $x_2 \in \Omega_2$ be such that $\mathbb{P}[\mathbb{X}_1 = x_1, \mathbb{X}_2 = x_2] > 0$. Then, the following holds.

$$\mathbb{P}\left[\mathbb{X}_1 = x_1 \mid \mathbb{X}_2 = x_2\right] = \frac{\mathbb{P}\left[\mathbb{X}_1 = x_1, \mathbb{X}_2 = x_2\right]}{\mathbb{P}\left[\mathbb{X}_2 = x_2\right]}$$

The random variables \mathbb{X}_1 and \mathbb{X}_2 are independent of each other if the distribution $(\mathbb{X}_1 \mid \mathbb{X}_2 = x_2)$ is identical to the random variable \mathbb{X}_1 , for all $x_2 \in \Omega_2$ such that $\mathbb{P}[\mathbb{X}_2 = x_2] > 0$ We can generalize the Bayes' Rule as follows.

Theorem (Chain Rule)

Let $(X_1, X_2, ..., X_n)$ be a joint distribution over the sample space $\Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$. For any $(x_1, ..., x_n) \in \Omega_1 \times \cdots \times \Omega_n$ we have

$$\mathbb{P}\left[\mathbb{X}_1 = x_1, \dots, \mathbb{X}_n = x_n\right] = \prod_{i=1}^n \mathbb{P}\left[\mathbb{X}_i = x_i \mid \mathbb{X}_{i-1} = x_{i-1}, \dots, \mathbb{X}_1 = x_1\right]$$

A (1) > A (2) > A

In which context do we foresee to use the Bayes' Rule to compute joint probability?

• Sometimes, the problem at hand will clearly state how to sample X_1 and then, conditioned on the fact that $X_1 = x_1$, it will state how to sample X_2 . In such cases, we shall use the Bayes' rule to calculate

$$\mathbb{P}\left[\mathbb{X}_1 = x_1, \mathbb{X}_2 = x_2\right] = \mathbb{P}\left[\mathbb{X}_1 = x_1\right]\mathbb{P}\left[\mathbb{X}_2 = x_2|\mathbb{X}_1 = x_1\right]$$

• Let us consider an example.

• Suppose \mathbb{X}_1 is a random variable over $\Omega_1 = \{0, 1\}$ such that $\mathbb{P}[X_1 = 0] = 1/2$. Next, the random variable \mathbb{X}_2 is over $\Omega_2 = \{0, 1\}$ such that $\mathbb{P}[X_2 = x_1 | \mathbb{X}_1 = x_1] = 2/3$. Note that \mathbb{X}_2 is biased towards the outcome of \mathbb{X}_1 .

• What is the probability that we get $\mathbb{P}\left[\mathbb{X}_1=0,\mathbb{X}_2=1\right]?$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

• To compute this probability, we shall use the Bayes' rule.

$$\mathbb{P}\left[\mathbb{X}_1=0\right]=1/2$$

Next, we know that

$$\mathbb{P}\left[\mathbb{X}_2 = 0 | \mathbb{X}_1 = 0\right] = 2/3$$

Therefore, we have $\mathbb{P}\left[\mathbb{X}_2=1|\mathbb{X}_1=0\right]=1/3.$ So, we get

$$\mathbb{P}\left[\mathbb{X}_1 = 0, \mathbb{X}_2 = 1\right] = \mathbb{P}\left[\mathbb{X}_1 = 0\right] \mathbb{P}\left[\mathbb{X}_2 = 1 | \mathbb{X}_1 = 0\right]$$
$$= (1/2) \cdot (1/3) = 1/6$$

・ロト ・雪ト ・ヨト ・ヨト

- Let S be the random variable representing whether I studied for my exam. This random variable has sample space $\Omega_1 = \{Y, N\}$
- Let \mathbb{P} be the random variable representing whether I passed my exam This random variable has sample space $\Omega_2 = \{Y, N\}$
- Our sample space is $\Omega=\Omega_1\times\Omega_2$
- The joint distribution (\mathbb{S},\mathbb{P}) is represented in the next page

Probability: First Example II

s	р	$\mathbb{P}\left[\mathbb{S}=s,\mathbb{P}=p ight]$
Y	Y	1/2
Y	Ν	1/4
Ν	Y	0
Ν	Ν	1/4

Probability

・ロト ・日 ・ ・ ヨ ・ ・

문어 문

Here are some interesting probability computations The probability that I pass.

$$\mathbb{P}\left[\mathbb{P}=\mathsf{Y}\right] = \mathbb{P}\left[\mathbb{S}=\mathsf{Y}, \mathbb{P}=\mathsf{Y}\right] + \mathbb{P}\left[\mathbb{S}=\mathsf{N}, \mathbb{P}=\mathsf{Y}\right]$$
$$= 1/2 + 0 = 1/2$$

AP ► < E ►

The probability that I study.

$$\mathbb{P}\left[\mathbb{S} = \mathsf{Y}\right] = \mathbb{P}\left[\mathbb{S} = \mathsf{Y}, \mathbb{P} = \mathsf{Y}\right] + \mathbb{P}\left[\mathbb{S} = \mathsf{Y}, \mathbb{P} = \mathsf{N}\right]$$
$$= 1/2 + 1/4 = 3/4$$

Probability

▲ 同 ▶ ▲ 三

∃⇒

The probability that I pass conditioned on the fact that I studied.

$$\mathbb{P}\left[\mathbb{P} = \mathsf{Y} \mid \mathbb{S} = \mathsf{Y}\right] = \frac{\mathbb{P}\left[\mathbb{P} = \mathsf{Y}, \mathbb{S} = \mathsf{Y}\right]}{\mathbb{P}\left[\mathbb{S} = \mathsf{Y}\right]}$$
$$= \frac{1/2}{3/4} = \frac{2}{3}$$

▲ 同 ▶ ▲ 国 ▶ ▲

- Let \mathbb{T} be the time of the day that I wake up. The random variable \mathbb{T} has sample space $\Omega_1 = \{4, 5, 6, 7, 8, 9, 10\}$
- Let $\mathbb B$ represent whether I have breakfast or not. The random variable $\mathbb B$ has sample space $\Omega_2=\{\mathsf{T},\mathsf{F}\}$
- Our sample space is $\Omega = \Omega_1 \times \Omega_2$
- The joint distribution of (\mathbb{T},\mathbb{B}) is presented on the next page

・ 同 ト ・ ヨ ト ・ ヨ ト …

Probability: Second Example II

t	b	$\mathbb{P}\left[\mathbb{T}=t,\mathbb{B}=b ight]$
4	Т	0.03
4	F	0
5	Т	0.02
5	F	0
6	Т	0.30
6	F	0.05
7	Т	0.20
7	F	0.10
8	Т	0.10
8	F	0.08
9	Т	0.05
9	F	0.05
10	Т	0
10	F	0.02

- 4 母 🕨 🖌 4 🖹 🕨 4

글▶ 글

• What is the probability that I have breakfast conditioned on the fact that I wake up at or before 7?

Formally, what is $\mathbb{P}\left[\mathbb{B} = \mathsf{T} \mid \mathbb{T} \leqslant 7\right]$?

Birthday Bound I

- Consider the following experiment. I sequentially throw $m \ (< n)$ balls into n bins uniformly and independently at random. What is the probability that there exists at least two balls that fall into the same bin?
- We shall compute the probability of the complementary event. We shall compute the probability that all *m* balls fall into distinct bins.
- To compute this probability, we define the following event. Let \mathbb{D}_i represent the event that the *i*-th ball falls into a bin that contains no other previous balls.
- Note that the event

```
\mathbb{D}_i and \mathbb{D}_{i-1} and \cdots and \mathbb{D}_1
```

represents the event that the first *i* balls fall in distinct bins.

イロト イポト イヨト イヨト 一日

Birthday Bound II

• We are interested in computing the following quantity

 $\mathbb{P}[\mathbb{D}_m, \mathbb{D}_{m-1}, \dots, \mathbb{D}_1]$

• Let us observe that the following estimate is correct

$$\mathbb{P}\left[\mathbb{D}_{i}|\mathbb{D}_{i-1},\mathbb{D}_{i-2},\ldots,\mathbb{D}_{1}
ight]=\left(1-rac{i-1}{n}
ight)$$

The reasoning is as follows. The conditioning $\mathbb{D}_{i-1}, \mathbb{D}_{i-2}, \ldots, \mathbb{D}_1$ ensures that the first (i-1) balls fall in distinct bins. We are interested in computing the probability that the *i*-th ball falls in a bin that is separate from these (i-1) bins. So, there are n - (i-1) such bins. The probability that the *i*-th ball falls in these bins is $\frac{n-(i-1)}{n}$.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Birthday Bound III

• By chain rule, we have

$$\mathbb{P}\left[\mathbb{D}_{m},\ldots,\mathbb{D}_{1}\right] = \prod_{i=1}^{m} \mathbb{P}\left[\mathbb{D}_{i}|\mathbb{D}_{i-1},\ldots,\mathbb{D}_{1}\right]$$
$$= \prod_{i=1}^{m} \left(1 - \frac{i-1}{n}\right)$$
$$= \left(1 - \frac{0}{n}\right) \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right)$$

• Next, our objective is to estimate the expression

$$P = \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right)$$

Probability

- 4 同 ト - 4 回 ト

Birthday Bound IV

We can re-write this expression as

$$P = \prod_{i=2}^{m} \left(1 - \frac{i-1}{n}\right)$$
$$= \prod_{i=2}^{m} \exp \ln \left(1 - \frac{i-1}{n}\right)$$
$$= \exp \sum_{i=2}^{m} \ln \left(1 - \frac{i-1}{n}\right)$$

We shall use the estimate

- ∢ 🖓 ト ∢ 🖻

∃⇒

Birthday Bound V

Claim

For any $\varepsilon \in [0, 1/2]$ and integer $k \ge 2$, we have

$$-\varepsilon - \frac{\varepsilon^2}{2} \cdots - \frac{\varepsilon^k}{k} - \frac{\varepsilon^k}{k} \leq \ln(1-\varepsilon) \leq -\varepsilon - \frac{\varepsilon^2}{2} \cdots - \frac{\varepsilon^k}{k}$$

Using k = 2, we obtain $-\varepsilon - \varepsilon^2 \le \ln(1 - \varepsilon) \le -\varepsilon - \varepsilon^2/2$. • Let us obtain an upper-bound

$$P = \exp \sum_{i=2}^{m} \ln \left(1 - \frac{i-1}{n} \right)$$
$$\leqslant \exp \left(\sum_{i=2}^{m} -\frac{i-1}{n} - \frac{(i-1)^2}{2n^2} \right)$$
$$= \exp \left(-\frac{(m-1)m}{2n} - \frac{(m-1)(m-1/2)m}{6n^2} \right)$$

Probability

Birthday Bound VI

• Similarly, we can obtain the lower-bound

$$P = \exp \sum_{i=2}^{m} \ln \left(1 - \frac{i-1}{n} \right)$$

$$\geq \exp \left(\sum_{i=2}^{m} -\frac{i-1}{n} - \frac{(i-1)^2}{n^2} \right)$$

$$= \exp \left(-\frac{(m-1)m}{2n} - \frac{(m-1)(m-1/2)m}{3n^2} \right)$$

• Note that at $m = \Theta(\sqrt{n})$ the probability *P* transitions from 0.01 to 0.99

イロト イポト イヨト イヨト

3