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Probability Basics

Sample Space: Ω is a set of outcomes (it can either be finite
or infinite)
Random Variable: X is a random variable that assigns
probabilities to outcomes

Example: Let Ω = {Heads,Tails}. Let X be a random variable that
outputs Heads with probability 1/3 and outputs Tails with
probability 2/3

The probability that X assigns to the outcome x is represented
by

P [X = x ]

Example: In the ongoing example P [X = Heads] = 1/3.
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Function of a Random Variable

Let f : Ω→ Ω′ be a function
Let X be a random variable over the sample space X
We define a new random variable f (X) is over Ω′ as follows

P
[
f (X) = y

]
=

∑
x∈Ω: f (x)=y

P [X = x ]
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Joint Distribution and Marginal Distributions I

Suppose (X1,X2) is a random variable over Ω1 × Ω2.
Intuitively, the random variable (X1,X2) takes values of the
form (x1, x2), where the first coordinate lies in Ω1, and the
second coordinate likes in Ω2

For example, let (X1,X2) represent the temperatures of West
Lafayette and Lafayette. Their sample space is Z× Z. Note that
these two outcomes can be correlated with each other.
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Joint Distribution and Marginal Distributions II

Let P1 : Ω1 × Ω2 → Ω1 be the function P1(x1, x2) = x1 (the
projection operator)

So, the random variable P1(X1,X2) is a probability
distribution over the sample space Ω1

This is represented simply as X1, the marginal distribution of
the first coordinate

Similarly, we can define X2
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Conditional Distribution

Let (X1,X2) be a joint distribution over the sample space
Ω1 × Ω2

We can define the distribution (X1 | X2 = x2) as follows
This random variable is a distribution over the sample space Ω1
The probability distribution is defined as follows

P
[
X1 = x1 | X2 = x2

]
=

P [X1 = x1,X2 = x2]∑
x∈Ω1

P [X1 = x ,X2 = x2]

For example, conditioned on the temperature at Lafayette being 0,
what is the conditional probability distribution of the temperature
in West Lafayette?
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Bayes’ Rule

Theorem (Bayes’ Rule)

Let (X1,X2) be a joint distribution over the sample space (Ω1,Ω2).
Let x1 ∈ Ω1 and x2 ∈ Ω2 be such that P [X1 = x1,X2 = x2] > 0.
Then, the following holds.

P
[
X1 = x1 | X2 = x2

]
=

P [X1 = x1,X2 = x2]

P [X2 = x2]

The random variables X1 and X2 are independent of each other if
the distribution (X1 | X2 = x2) is identical to the random variable
X1, for all x2 ∈ Ω2 such that P [X2 = x2] > 0
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Chain Rule

We can generalize the Bayes’ Rule as follows.

Theorem (Chain Rule)

Let (X1,X2, . . . ,Xn) be a joint distribution over the sample space
Ω1 × Ω2 ×· · · × Ωn. For any (x1, . . . , xn) ∈ Ω1 ×· · · × Ωn we have

P [X1 = x1, . . . ,Xn = xn] =
n∏

i=1

P
[
Xi = xi | Xi−1 = xi−1 . . . ,X1 = x1

]
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Important: Why use Bayes’ Rule I

In which context do we foresee to use the Bayes’ Rule to compute
joint probability?

Sometimes, the problem at hand will clearly state how to
sample X1 and then, conditioned on the fact that X1 = x1, it
will state how to sample X2. In such cases, we shall use the
Bayes’ rule to calculate

P [X1 = x1,X2 = x2] = P [X1 = x1]P
[
X2 = x2|X1 = x1

]
Let us consider an example.

Suppose X1 is a random variable over Ω1 = {0, 1} such that
P [X1 = 0] = 1/2. Next, the random variable X2 is over
Ω2 = {0, 1} such that P

[
X2 = x1|X1 = x1

]
= 2/3. Note that

X2 is biased towards the outcome of X1.
What is the probability that we get P [X1 = 0,X2 = 1]?
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Important: Why use Bayes’ Rule II

To compute this probability, we shall use the Bayes’ rule.

P [X1 = 0] = 1/2

Next, we know that

P
[
X2 = 0|X1 = 0

]
= 2/3

Therefore, we have P
[
X2 = 1|X1 = 0

]
= 1/3. So, we get

P [X1 = 0,X2 = 1] = P [X1 = 0]P
[
X2 = 1|X1 = 0

]
= (1/2) · (1/3) = 1/6
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Probability: First Example I

Let S be the random variable representing whether I studied for
my exam. This random variable has sample space Ω1 = {Y,N}
Let P be the random variable representing whether I passed
my exam This random variable has sample space Ω2 = {Y,N}
Our sample space is Ω = Ω1 × Ω2

The joint distribution (S,P) is represented in the next page
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Probability: First Example II

s p P [S = s,P = p]

Y Y 1/2
Y N 1/4
N Y 0
N N 1/4
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Probability: First Example III

Here are some interesting probability computations
The probability that I pass.

P [P = Y] = P [S = Y,P = Y] + P [S = N,P = Y]

= 1/2 + 0 = 1/2
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Probability: First Example IV

The probability that I study.

P [S = Y] = P [S = Y,P = Y] + P [S = Y,P = N]

= 1/2 + 1/4 = 3/4
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Probability: First Example V

The probability that I pass conditioned on the fact that I studied.

P
[
P = Y | S = Y

]
=

P [P = Y, S = Y]

P [S = Y]

=
1/2
3/4

=
2
3
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Probability: Second Example I

Let T be the time of the day that I wake up. The random
variable T has sample space Ω1 = {4, 5, 6, 7, 8, 9, 10}
Let B represent whether I have breakfast or not. The random
variable B has sample space Ω2 = {T,F}
Our sample space is Ω = Ω1 × Ω2

The joint distribution of (T,B) is presented on the next page
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Probability: Second Example II

t b P [T = t,B = b]

4 T 0.03
4 F 0
5 T 0.02
5 F 0
6 T 0.30
6 F 0.05
7 T 0.20
7 F 0.10
8 T 0.10
8 F 0.08
9 T 0.05
9 F 0.05
10 T 0
10 F 0.02
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Probability: Second Example III

What is the probability that I have breakfast conditioned on
the fact that I wake up at or before 7?

Formally, what is P
[
B = T | T 6 7

]
?
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Birthday Bound I

Consider the following experiment. I sequentially throw
m (< n) balls into n bins uniformly and independently at
random. What is the probability that there exists at least two
balls that fall into the same bin?

We shall compute the probability of the complementary event.
We shall compute the probability that all m balls fall into
distinct bins.

To compute this probability, we define the following event. Let
Di represent the event that the i-th ball falls into a bin that
contains no other previous balls.

Note that the event

Di and Di−1 and · · · and D1

represents the event that the first i balls fall in distinct bins.
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Birthday Bound II

We are interested in computing the following quantity

P [Dm,Dm−1, . . . ,D1]

Let us observe that the following estimate is correct

P
[
Di |Di−1,Di−2, . . . ,D1

]
=

(
1− i − 1

n

)
The reasoning is as follows. The conditioning
Di−1,Di−2, . . . ,D1 ensures that the first (i − 1) balls fall in
distinct bins. We are interested in computing the probability
that the i-th ball falls in a bin that is separate from these
(i − 1) bins. So, there are n − (i − 1) such bins. The
probability that the i-th ball falls in these bins is n−(i−1)

n .
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Birthday Bound III

By chain rule, we have

P [Dm, . . . ,D1] =
m∏
i=1

P
[
Di |Di−1, . . . ,D1

]
=

m∏
i=1

(
1− i − 1

n

)
=

(
1− 0

n

)(
1− 1

n

)(
1− 2

n

)
· · ·
(
1− m − 1

n

)
Next, our objective is to estimate the expression

P =

(
1− 1

n

)(
1− 2

n

)
· · ·
(
1− m − 1

n

)

Probability



Birthday Bound IV

We can re-write this expression as

P =
m∏
i=2

(
1− i − 1

n

)

=
m∏
i=2

exp ln

(
1− i − 1

n

)

= exp
m∑
i=2

ln

(
1− i − 1

n

)
We shall use the estimate
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Birthday Bound V

Claim
For any ε ∈ [0, 1/2] and integer k > 2, we have

−ε− ε2

2
· · · − εk

k
− εk

k
6 ln(1− ε) 6 −ε− ε2

2
· · · − εk

k

Using k = 2, we obtain −ε− ε2 6 ln(1− ε) 6 −ε− ε2/2.

Let us obtain an upper-bound

P = exp
m∑
i=2

ln

(
1− i − 1

n

)

6 exp

 m∑
i=2

− i − 1
n
− (i − 1)2

2n2


= exp

(
−(m − 1)m

2n
− (m − 1)(m − 1/2)m

6n2

)
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Birthday Bound VI

Similarly, we can obtain the lower-bound

P = exp
m∑
i=2

ln

(
1− i − 1

n

)

> exp

 m∑
i=2

− i − 1
n
− (i − 1)2

n2


= exp

(
−(m − 1)m

2n
− (m − 1)(m − 1/2)m

3n2

)
Note that at m = Θ(

√
n) the probability P transitions

from 0.01 to 0.99
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